p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM.

نویسندگان

  • Jacob Stewart-Ornstein
  • Galit Lahav
چکیده

Cellular systems show a wide range of signaling dynamics. Many of these dynamics are highly stereotyped, such as oscillations at a fixed frequency. However, most studies looking at the role of signaling dynamics focus on one or a few cell lines, leaving the diversity of dynamics across tissues or cell lines a largely unexplored question. We focused on the dynamics of the tumor suppressor protein p53, which regulates cell cycle arrest and apoptosis in response to DNA damage. We established live-cell reporters for 12 cancer cell lines expressing wild-type p53 and quantified p53 dynamics in response to double-strand break-inducing DNA damage. In many of the tested cell lines, we found that p53 abundance oscillated in response to ionizing radiation or the DNA-damaging chemotherapeutic neocarzinostatin and that the periodicity of the oscillations was fixed. In other cell lines, p53 abundance dynamically changed in different ways, such as a single broad pulse or a continuous induction. By combining single-cell assays of p53 signaling dynamics, small-molecule screening in live cells, and mathematical modeling, we identified molecules that perturbed p53 dynamics and determined that cell-specific variation in the efficiency of DNA repair and the activity of the kinase ATM (ataxia-telangiectasia mutated) controlled the signaling landscape of p53 dynamics. Because the dynamics of wild-type p53 varied substantially between cell lines, our study highlights the limitation of using one line as a model system and emphasizes the importance of studying the dynamics of other signaling pathways across different cell lines and genetic backgrounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells

Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...

متن کامل

Ran Binding Protein 9 (RanBP9) is a novel mediator of cellular DNA damage response in lung cancer cells

Ran Binding Protein 9 (RanBP9, also known as RanBPM) is an evolutionary conserved scaffold protein present both in the nucleus and the cytoplasm of cells whose biological functions remain elusive. We show that active ATM phosphorylates RanBP9 on at least two different residues (S181 and S603). In response to IR, RanBP9 rapidly accumulates into the nucleus of lung cancer cells, but this nuclear ...

متن کامل

Quantitation of genome damage and transcriptional profile of DNA damage response genes in human peripheral blood mononuclear cells exposed in vitro to low doses of neutron radiation

Background: Humans are exposed to ionizing radiation from different sources that include natural, occupational, medical, accidental exposures. Evaluation of the effect of low level of neutron exposure to human cells in vitro has important implications to human health. Attempts were made to measure genome damage, transcriptional profile of DNA damage response and repair genes in peripheral blood...

متن کامل

Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage

A functional DNA damage response is essential for maintaining genome integrity in the presence of DNA double-strand breaks. It is mainly coordinated by the kinases ATM, ATR, and DNA-PKcs, which control the repair of broken DNA strands and relay the damage signal to the tumor suppressor p53 to induce cell cycle arrest, apoptosis, or senescence. Although many functions of the individual kinases h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science signaling

دوره 10 476  شماره 

صفحات  -

تاریخ انتشار 2017